0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 AND
↳7 IDP
↳8 IDependencyGraphProof (⇔)
↳9 IDP
↳10 IDPNonInfProof (⇒)
↳11 AND
↳12 IDP
↳13 IDependencyGraphProof (⇔)
↳14 IDP
↳15 IDPNonInfProof (⇒)
↳16 AND
↳17 IDP
↳18 IDependencyGraphProof (⇔)
↳19 TRUE
↳20 IDP
↳21 IDependencyGraphProof (⇔)
↳22 TRUE
↳23 IDP
↳24 IDependencyGraphProof (⇔)
↳25 TRUE
↳26 IDP
↳27 IDependencyGraphProof (⇔)
↳28 IDP
↳29 IDPNonInfProof (⇒)
↳30 IDP
↳31 IDependencyGraphProof (⇔)
↳32 IDP
↳33 IDPNonInfProof (⇒)
↳34 AND
↳35 IDP
↳36 IDependencyGraphProof (⇔)
↳37 TRUE
↳38 IDP
↳39 IDependencyGraphProof (⇔)
↳40 TRUE
public class Test2 {
public static void main(String[] args) {
iter(args.length, args.length % 5, args.length % 4);
}
private static void iter(int x, int y, int z) {
while (x + y + 3 * z >= 0) {
if (x > y)
x--;
else if (y > z) {
x++;
y -= 2;
}
else if (y <= z) {
x = add(x, 1);
y = add(y, 1);
z = z - 1;
}
}
}
private static int add(int v, int w) {
return v + w;
}
}
Generated 57 rules for P and 3 rules for R.
Combined rules. Obtained 4 rules for P and 0 rules for R.
Filtered ground terms:
830_0_iter_Load(x1, x2, x3, x4, x5) → 830_0_iter_Load(x2, x3, x4, x5)
Filtered duplicate args:
830_0_iter_Load(x1, x2, x3, x4) → 830_0_iter_Load(x2, x3, x4)
Combined rules. Obtained 3 rules for P and 0 rules for R.
Finished conversion. Obtained 3 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] →* TRUE)∧(830_0_iter_Load(x1[0], x2[0], x0[0]) →* 830_0_iter_Load(x1[1], x2[1], x0[1])))
(1) -> (0), if ((830_0_iter_Load(x1[1] + 1, x2[1] - 1, x0[1] + 1) →* 830_0_iter_Load(x1[0], x2[0], x0[0])))
(1) -> (2), if ((830_0_iter_Load(x1[1] + 1, x2[1] - 1, x0[1] + 1) →* 830_0_iter_Load(x1[2], x2[2], x0[2])))
(1) -> (4), if ((830_0_iter_Load(x1[1] + 1, x2[1] - 1, x0[1] + 1) →* 830_0_iter_Load(x1[4], x2[4], x0[4])))
(2) -> (3), if ((x2[2] < x1[2] && x1[2] >= x0[2] && 0 <= x0[2] + x1[2] + 3 * x2[2] →* TRUE)∧(830_0_iter_Load(x1[2], x2[2], x0[2]) →* 830_0_iter_Load(x1[3], x2[3], x0[3])))
(3) -> (0), if ((830_0_iter_Load(x1[3] + -2, x2[3], x0[3] + 1) →* 830_0_iter_Load(x1[0], x2[0], x0[0])))
(3) -> (2), if ((830_0_iter_Load(x1[3] + -2, x2[3], x0[3] + 1) →* 830_0_iter_Load(x1[2], x2[2], x0[2])))
(3) -> (4), if ((830_0_iter_Load(x1[3] + -2, x2[3], x0[3] + 1) →* 830_0_iter_Load(x1[4], x2[4], x0[4])))
(4) -> (5), if ((x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] →* TRUE)∧(830_0_iter_Load(x1[4], x2[4], x0[4]) →* 830_0_iter_Load(x1[5], x2[5], x0[5])))
(5) -> (0), if ((830_0_iter_Load(x1[5], x2[5], x0[5] + -1) →* 830_0_iter_Load(x1[0], x2[0], x0[0])))
(5) -> (2), if ((830_0_iter_Load(x1[5], x2[5], x0[5] + -1) →* 830_0_iter_Load(x1[2], x2[2], x0[2])))
(5) -> (4), if ((830_0_iter_Load(x1[5], x2[5], x0[5] + -1) →* 830_0_iter_Load(x1[4], x2[4], x0[4])))
(1) (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUE∧830_0_iter_Load(x1[0], x2[0], x0[0])=830_0_iter_Load(x1[1], x2[1], x0[1]) ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[0], x2[0], x0[0]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[0], x2[0], x0[0]))≥COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥))
(2) (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE∧>=(x2[0], x1[0])=TRUE∧>=(x1[0], x0[0])=TRUE ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[0], x2[0], x0[0]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[0], x2[0], x0[0]))≥COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥))
(3) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥)∧[(-1)Bound*bni_19] + [bni_19]x2[0] + [bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(4) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥)∧[(-1)Bound*bni_19] + [bni_19]x2[0] + [bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(5) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥)∧[(-1)Bound*bni_19] + [bni_19]x2[0] + [bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(6) (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥)∧[(-1)Bound*bni_19] + [bni_19]x1[0] + [bni_19]x2[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥)∧[(-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-1)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(8) (COND_830_1_MAIN_INVOKEMETHOD(TRUE, 830_0_iter_Load(x1[1], x2[1], x0[1]))≥NonInfC∧COND_830_1_MAIN_INVOKEMETHOD(TRUE, 830_0_iter_Load(x1[1], x2[1], x0[1]))≥830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))∧(UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))), ≥))
(9) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))), ≥)∧[(-1)bso_22] ≥ 0)
(10) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))), ≥)∧[(-1)bso_22] ≥ 0)
(11) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))), ≥)∧[(-1)bso_22] ≥ 0)
(12) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_22] ≥ 0)
(13) (&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2]))))=TRUE∧830_0_iter_Load(x1[2], x2[2], x0[2])=830_0_iter_Load(x1[3], x2[3], x0[3]) ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[2], x2[2], x0[2]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[2], x2[2], x0[2]))≥COND_830_1_MAIN_INVOKEMETHOD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), 830_0_iter_Load(x1[2], x2[2], x0[2]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), 830_0_iter_Load(x1[2], x2[2], x0[2]))), ≥))
(14) (<=(0, +(+(x0[2], x1[2]), *(3, x2[2])))=TRUE∧<(x2[2], x1[2])=TRUE∧>=(x1[2], x0[2])=TRUE ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[2], x2[2], x0[2]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[2], x2[2], x0[2]))≥COND_830_1_MAIN_INVOKEMETHOD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), 830_0_iter_Load(x1[2], x2[2], x0[2]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), 830_0_iter_Load(x1[2], x2[2], x0[2]))), ≥))
(15) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), 830_0_iter_Load(x1[2], x2[2], x0[2]))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x2[2] + [bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(16) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), 830_0_iter_Load(x1[2], x2[2], x0[2]))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x2[2] + [bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(17) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), 830_0_iter_Load(x1[2], x2[2], x0[2]))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x2[2] + [bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(18) (x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧[2]x1[2] + [3]x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), 830_0_iter_Load(x1[2], x2[2], x0[2]))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(19) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), 830_0_iter_Load(x1[2], x2[2], x0[2]))), ≥)∧[(-1)Bound*bni_23 + bni_23] + [(2)bni_23]x2[2] + [bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(20) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), 830_0_iter_Load(x1[2], x2[2], x0[2]))), ≥)∧[(-1)Bound*bni_23 + bni_23] + [(2)bni_23]x2[2] + [bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(21) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [-5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), 830_0_iter_Load(x1[2], x2[2], x0[2]))), ≥)∧[(-1)Bound*bni_23 + bni_23] + [(-2)bni_23]x2[2] + [bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(22) (COND_830_1_MAIN_INVOKEMETHOD1(TRUE, 830_0_iter_Load(x1[3], x2[3], x0[3]))≥NonInfC∧COND_830_1_MAIN_INVOKEMETHOD1(TRUE, 830_0_iter_Load(x1[3], x2[3], x0[3]))≥830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[3], -2), x2[3], +(x0[3], 1)))∧(UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[3], -2), x2[3], +(x0[3], 1)))), ≥))
(23) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[3], -2), x2[3], +(x0[3], 1)))), ≥)∧[2 + (-1)bso_26] ≥ 0)
(24) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[3], -2), x2[3], +(x0[3], 1)))), ≥)∧[2 + (-1)bso_26] ≥ 0)
(25) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[3], -2), x2[3], +(x0[3], 1)))), ≥)∧[2 + (-1)bso_26] ≥ 0)
(26) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[3], -2), x2[3], +(x0[3], 1)))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[2 + (-1)bso_26] ≥ 0)
(27) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧830_0_iter_Load(x1[4], x2[4], x0[4])=830_0_iter_Load(x1[5], x2[5], x0[5]) ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥))
(28) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥))
(29) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_27] + [bni_27]x2[4] + [bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(30) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_27] + [bni_27]x2[4] + [bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(31) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_27] + [bni_27]x2[4] + [bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(32) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_27] + [bni_27]x1[4] + [bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(33) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_27] + [bni_27]x1[4] + [bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(34) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_27] + [(-1)bni_27]x1[4] + [bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(35) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_27] + [bni_27]x1[4] + [bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(36) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_27] + [bni_27]x1[4] + [(-1)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(37) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_27] + [(-1)bni_27]x1[4] + [bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(38) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_27] + [(-1)bni_27]x1[4] + [(-1)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(39) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_27] + [bni_27]x1[4] + [bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(40) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_27] + [bni_27]x1[4] + [(-1)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(41) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_27] + [(-1)bni_27]x1[4] + [bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(42) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_27] + [(-1)bni_27]x1[4] + [(-1)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(43) (COND_830_1_MAIN_INVOKEMETHOD2(TRUE, 830_0_iter_Load(x1[5], x2[5], x0[5]))≥NonInfC∧COND_830_1_MAIN_INVOKEMETHOD2(TRUE, 830_0_iter_Load(x1[5], x2[5], x0[5]))≥830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))∧(UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥))
(44) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧[(-1)bso_30] ≥ 0)
(45) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧[(-1)bso_30] ≥ 0)
(46) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧[(-1)bso_30] ≥ 0)
(47) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_30] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(830_1_MAIN_INVOKEMETHOD(x1)) = [-1] + [-1]x1
POL(830_0_iter_Load(x1, x2, x3)) = [-1] + [-1]x2 + [-1]x1
POL(COND_830_1_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(1) = [1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(COND_830_1_MAIN_INVOKEMETHOD1(x1, x2)) = [-1] + [-1]x2
POL(<(x1, x2)) = [-1]
POL(-2) = [-2]
POL(COND_830_1_MAIN_INVOKEMETHOD2(x1, x2)) = [-1] + [-1]x2
POL(-1) = [-1]
COND_830_1_MAIN_INVOKEMETHOD1(TRUE, 830_0_iter_Load(x1[3], x2[3], x0[3])) → 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[3], -2), x2[3], +(x0[3], 1)))
830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[2], x2[2], x0[2])) → COND_830_1_MAIN_INVOKEMETHOD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), 830_0_iter_Load(x1[2], x2[2], x0[2]))
830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[0], x2[0], x0[0])) → COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))
COND_830_1_MAIN_INVOKEMETHOD(TRUE, 830_0_iter_Load(x1[1], x2[1], x0[1])) → 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))
830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[2], x2[2], x0[2])) → COND_830_1_MAIN_INVOKEMETHOD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), 830_0_iter_Load(x1[2], x2[2], x0[2]))
830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4])) → COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))
COND_830_1_MAIN_INVOKEMETHOD2(TRUE, 830_0_iter_Load(x1[5], x2[5], x0[5])) → 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if ((830_0_iter_Load(x1[1] + 1, x2[1] - 1, x0[1] + 1) →* 830_0_iter_Load(x1[0], x2[0], x0[0])))
(5) -> (0), if ((830_0_iter_Load(x1[5], x2[5], x0[5] + -1) →* 830_0_iter_Load(x1[0], x2[0], x0[0])))
(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] →* TRUE)∧(830_0_iter_Load(x1[0], x2[0], x0[0]) →* 830_0_iter_Load(x1[1], x2[1], x0[1])))
(1) -> (2), if ((830_0_iter_Load(x1[1] + 1, x2[1] - 1, x0[1] + 1) →* 830_0_iter_Load(x1[2], x2[2], x0[2])))
(5) -> (2), if ((830_0_iter_Load(x1[5], x2[5], x0[5] + -1) →* 830_0_iter_Load(x1[2], x2[2], x0[2])))
(1) -> (4), if ((830_0_iter_Load(x1[1] + 1, x2[1] - 1, x0[1] + 1) →* 830_0_iter_Load(x1[4], x2[4], x0[4])))
(5) -> (4), if ((830_0_iter_Load(x1[5], x2[5], x0[5] + -1) →* 830_0_iter_Load(x1[4], x2[4], x0[4])))
(4) -> (5), if ((x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] →* TRUE)∧(830_0_iter_Load(x1[4], x2[4], x0[4]) →* 830_0_iter_Load(x1[5], x2[5], x0[5])))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((830_0_iter_Load(x1[1] + 1, x2[1] - 1, x0[1] + 1) →* 830_0_iter_Load(x1[0], x2[0], x0[0])))
(5) -> (0), if ((830_0_iter_Load(x1[5], x2[5], x0[5] + -1) →* 830_0_iter_Load(x1[0], x2[0], x0[0])))
(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] →* TRUE)∧(830_0_iter_Load(x1[0], x2[0], x0[0]) →* 830_0_iter_Load(x1[1], x2[1], x0[1])))
(1) -> (4), if ((830_0_iter_Load(x1[1] + 1, x2[1] - 1, x0[1] + 1) →* 830_0_iter_Load(x1[4], x2[4], x0[4])))
(5) -> (4), if ((830_0_iter_Load(x1[5], x2[5], x0[5] + -1) →* 830_0_iter_Load(x1[4], x2[4], x0[4])))
(4) -> (5), if ((x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] →* TRUE)∧(830_0_iter_Load(x1[4], x2[4], x0[4]) →* 830_0_iter_Load(x1[5], x2[5], x0[5])))
(1) (COND_830_1_MAIN_INVOKEMETHOD2(TRUE, 830_0_iter_Load(x1[5], x2[5], x0[5]))≥NonInfC∧COND_830_1_MAIN_INVOKEMETHOD2(TRUE, 830_0_iter_Load(x1[5], x2[5], x0[5]))≥830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))∧(UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥))
(2) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧[(-1)bso_12] ≥ 0)
(3) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧[(-1)bso_12] ≥ 0)
(4) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧[(-1)bso_12] ≥ 0)
(5) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_12] ≥ 0)
(6) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧830_0_iter_Load(x1[4], x2[4], x0[4])=830_0_iter_Load(x1[5], x2[5], x0[5]) ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥))
(7) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥))
(8) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(9) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(10) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(11) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(12) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(13) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(14) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(15) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(16) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(17) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(18) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(19) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(20) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(21) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(22) (COND_830_1_MAIN_INVOKEMETHOD(TRUE, 830_0_iter_Load(x1[1], x2[1], x0[1]))≥NonInfC∧COND_830_1_MAIN_INVOKEMETHOD(TRUE, 830_0_iter_Load(x1[1], x2[1], x0[1]))≥830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))∧(UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))), ≥))
(23) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))), ≥)∧[1 + (-1)bso_16] ≥ 0)
(24) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))), ≥)∧[1 + (-1)bso_16] ≥ 0)
(25) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))), ≥)∧[1 + (-1)bso_16] ≥ 0)
(26) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_16] ≥ 0)
(27) (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUE∧830_0_iter_Load(x1[0], x2[0], x0[0])=830_0_iter_Load(x1[1], x2[1], x0[1]) ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[0], x2[0], x0[0]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[0], x2[0], x0[0]))≥COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥))
(28) (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE∧>=(x2[0], x1[0])=TRUE∧>=(x1[0], x0[0])=TRUE ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[0], x2[0], x0[0]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[0], x2[0], x0[0]))≥COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥))
(29) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥)∧[(-1)Bound*bni_17] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(30) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥)∧[(-1)Bound*bni_17] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(31) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥)∧[(-1)Bound*bni_17] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(32) (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥)∧[(-1)Bound*bni_17] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(33) (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥)∧[(-1)Bound*bni_17] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_830_1_MAIN_INVOKEMETHOD2(x1, x2)) = [-1] + [-1]x2
POL(830_0_iter_Load(x1, x2, x3)) = [-1] + [-1]x2
POL(830_1_MAIN_INVOKEMETHOD(x1)) = [-1] + [-1]x1
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(&&(x1, x2)) = 0
POL(<(x1, x2)) = [-1]
POL(<=(x1, x2)) = 0
POL(0) = 0
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(COND_830_1_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [-1]x2
POL(1) = [1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(>=(x1, x2)) = [-1]
COND_830_1_MAIN_INVOKEMETHOD(TRUE, 830_0_iter_Load(x1[1], x2[1], x0[1])) → 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))
830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4])) → COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))
830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[0], x2[0], x0[0])) → COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))
COND_830_1_MAIN_INVOKEMETHOD2(TRUE, 830_0_iter_Load(x1[5], x2[5], x0[5])) → 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))
830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4])) → COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))
830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[0], x2[0], x0[0])) → COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(5) -> (0), if ((830_0_iter_Load(x1[5], x2[5], x0[5] + -1) →* 830_0_iter_Load(x1[0], x2[0], x0[0])))
(5) -> (4), if ((830_0_iter_Load(x1[5], x2[5], x0[5] + -1) →* 830_0_iter_Load(x1[4], x2[4], x0[4])))
(4) -> (5), if ((x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] →* TRUE)∧(830_0_iter_Load(x1[4], x2[4], x0[4]) →* 830_0_iter_Load(x1[5], x2[5], x0[5])))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(5) -> (4), if ((830_0_iter_Load(x1[5], x2[5], x0[5] + -1) →* 830_0_iter_Load(x1[4], x2[4], x0[4])))
(4) -> (5), if ((x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] →* TRUE)∧(830_0_iter_Load(x1[4], x2[4], x0[4]) →* 830_0_iter_Load(x1[5], x2[5], x0[5])))
(1) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧830_0_iter_Load(x1[4], x2[4], x0[4])=830_0_iter_Load(x1[5], x2[5], x0[5]) ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥))
(2) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥))
(3) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9] + [bni_9]x0[4] + [(-1)bni_9]x1[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(4) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9] + [bni_9]x0[4] + [(-1)bni_9]x1[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(5) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9] + [bni_9]x0[4] + [(-1)bni_9]x1[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(6) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(7) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(8) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(9) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(10) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(11) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(12) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(13) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(14) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(15) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(16) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(17) (COND_830_1_MAIN_INVOKEMETHOD2(TRUE, 830_0_iter_Load(x1[5], x2[5], x0[5]))≥NonInfC∧COND_830_1_MAIN_INVOKEMETHOD2(TRUE, 830_0_iter_Load(x1[5], x2[5], x0[5]))≥830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))∧(UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥))
(18) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧[1 + (-1)bso_12] ≥ 0)
(19) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧[1 + (-1)bso_12] ≥ 0)
(20) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧[1 + (-1)bso_12] ≥ 0)
(21) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(830_1_MAIN_INVOKEMETHOD(x1)) = [-1] + [-1]x1
POL(830_0_iter_Load(x1, x2, x3)) = [-1] + [-1]x3 + x1
POL(COND_830_1_MAIN_INVOKEMETHOD2(x1, x2)) = [-1] + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(<(x1, x2)) = 0
POL(<=(x1, x2)) = [1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(-1) = [-1]
COND_830_1_MAIN_INVOKEMETHOD2(TRUE, 830_0_iter_Load(x1[5], x2[5], x0[5])) → 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))
830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4])) → COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))
830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4])) → COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if ((830_0_iter_Load(x1[1] + 1, x2[1] - 1, x0[1] + 1) →* 830_0_iter_Load(x1[0], x2[0], x0[0])))
(3) -> (0), if ((830_0_iter_Load(x1[3] + -2, x2[3], x0[3] + 1) →* 830_0_iter_Load(x1[0], x2[0], x0[0])))
(5) -> (0), if ((830_0_iter_Load(x1[5], x2[5], x0[5] + -1) →* 830_0_iter_Load(x1[0], x2[0], x0[0])))
(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] →* TRUE)∧(830_0_iter_Load(x1[0], x2[0], x0[0]) →* 830_0_iter_Load(x1[1], x2[1], x0[1])))
(1) -> (4), if ((830_0_iter_Load(x1[1] + 1, x2[1] - 1, x0[1] + 1) →* 830_0_iter_Load(x1[4], x2[4], x0[4])))
(3) -> (4), if ((830_0_iter_Load(x1[3] + -2, x2[3], x0[3] + 1) →* 830_0_iter_Load(x1[4], x2[4], x0[4])))
(5) -> (4), if ((830_0_iter_Load(x1[5], x2[5], x0[5] + -1) →* 830_0_iter_Load(x1[4], x2[4], x0[4])))
(4) -> (5), if ((x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] →* TRUE)∧(830_0_iter_Load(x1[4], x2[4], x0[4]) →* 830_0_iter_Load(x1[5], x2[5], x0[5])))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((830_0_iter_Load(x1[1] + 1, x2[1] - 1, x0[1] + 1) →* 830_0_iter_Load(x1[0], x2[0], x0[0])))
(5) -> (0), if ((830_0_iter_Load(x1[5], x2[5], x0[5] + -1) →* 830_0_iter_Load(x1[0], x2[0], x0[0])))
(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] →* TRUE)∧(830_0_iter_Load(x1[0], x2[0], x0[0]) →* 830_0_iter_Load(x1[1], x2[1], x0[1])))
(1) -> (4), if ((830_0_iter_Load(x1[1] + 1, x2[1] - 1, x0[1] + 1) →* 830_0_iter_Load(x1[4], x2[4], x0[4])))
(5) -> (4), if ((830_0_iter_Load(x1[5], x2[5], x0[5] + -1) →* 830_0_iter_Load(x1[4], x2[4], x0[4])))
(4) -> (5), if ((x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] →* TRUE)∧(830_0_iter_Load(x1[4], x2[4], x0[4]) →* 830_0_iter_Load(x1[5], x2[5], x0[5])))
(1) (COND_830_1_MAIN_INVOKEMETHOD2(TRUE, 830_0_iter_Load(x1[5], x2[5], x0[5]))≥NonInfC∧COND_830_1_MAIN_INVOKEMETHOD2(TRUE, 830_0_iter_Load(x1[5], x2[5], x0[5]))≥830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))∧(UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥))
(2) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧[(-1)bso_12] ≥ 0)
(3) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧[(-1)bso_12] ≥ 0)
(4) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧[(-1)bso_12] ≥ 0)
(5) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_12] ≥ 0)
(6) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧830_0_iter_Load(x1[4], x2[4], x0[4])=830_0_iter_Load(x1[5], x2[5], x0[5]) ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥))
(7) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥))
(8) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(9) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(10) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(11) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(12) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(13) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(14) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(15) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(16) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(17) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(18) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(19) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(20) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(21) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x2[4] ≥ 0∧[(-1)bso_14] ≥ 0)
(22) (COND_830_1_MAIN_INVOKEMETHOD(TRUE, 830_0_iter_Load(x1[1], x2[1], x0[1]))≥NonInfC∧COND_830_1_MAIN_INVOKEMETHOD(TRUE, 830_0_iter_Load(x1[1], x2[1], x0[1]))≥830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))∧(UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))), ≥))
(23) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))), ≥)∧[(-1)bso_16] ≥ 0)
(24) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))), ≥)∧[(-1)bso_16] ≥ 0)
(25) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))), ≥)∧[(-1)bso_16] ≥ 0)
(26) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)
(27) (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUE∧830_0_iter_Load(x1[0], x2[0], x0[0])=830_0_iter_Load(x1[1], x2[1], x0[1]) ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[0], x2[0], x0[0]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[0], x2[0], x0[0]))≥COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥))
(28) (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE∧>=(x2[0], x1[0])=TRUE∧>=(x1[0], x0[0])=TRUE ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[0], x2[0], x0[0]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[0], x2[0], x0[0]))≥COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥))
(29) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(30) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(31) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(32) (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(33) (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_830_1_MAIN_INVOKEMETHOD2(x1, x2)) = [2] + [-1]x2
POL(830_0_iter_Load(x1, x2, x3)) = [-1] + [-1]x2
POL(830_1_MAIN_INVOKEMETHOD(x1)) = [2] + [-1]x1
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(&&(x1, x2)) = 0
POL(<(x1, x2)) = [-1]
POL(<=(x1, x2)) = 0
POL(0) = 0
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(COND_830_1_MAIN_INVOKEMETHOD(x1, x2)) = [1] + [-1]x2
POL(1) = [1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(>=(x1, x2)) = [-1]
830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[0], x2[0], x0[0])) → COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))
830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4])) → COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))
830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[0], x2[0], x0[0])) → COND_830_1_MAIN_INVOKEMETHOD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), 830_0_iter_Load(x1[0], x2[0], x0[0]))
COND_830_1_MAIN_INVOKEMETHOD2(TRUE, 830_0_iter_Load(x1[5], x2[5], x0[5])) → 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))
830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4])) → COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))
COND_830_1_MAIN_INVOKEMETHOD(TRUE, 830_0_iter_Load(x1[1], x2[1], x0[1])) → 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1)))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (4), if ((830_0_iter_Load(x1[1] + 1, x2[1] - 1, x0[1] + 1) →* 830_0_iter_Load(x1[4], x2[4], x0[4])))
(5) -> (4), if ((830_0_iter_Load(x1[5], x2[5], x0[5] + -1) →* 830_0_iter_Load(x1[4], x2[4], x0[4])))
(4) -> (5), if ((x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] →* TRUE)∧(830_0_iter_Load(x1[4], x2[4], x0[4]) →* 830_0_iter_Load(x1[5], x2[5], x0[5])))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(5) -> (4), if ((830_0_iter_Load(x1[5], x2[5], x0[5] + -1) →* 830_0_iter_Load(x1[4], x2[4], x0[4])))
(4) -> (5), if ((x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] →* TRUE)∧(830_0_iter_Load(x1[4], x2[4], x0[4]) →* 830_0_iter_Load(x1[5], x2[5], x0[5])))
(1) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧830_0_iter_Load(x1[4], x2[4], x0[4])=830_0_iter_Load(x1[5], x2[5], x0[5]) ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥))
(2) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥NonInfC∧830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4]))≥COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))∧(UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥))
(3) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9] + [bni_9]x0[4] + [(-1)bni_9]x1[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(4) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9] + [bni_9]x0[4] + [(-1)bni_9]x1[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(5) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9] + [bni_9]x0[4] + [(-1)bni_9]x1[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(6) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(7) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(8) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(9) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(10) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(11) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(12) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(13) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(14) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(15) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(16) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))), ≥)∧[(-1)Bound*bni_9 + bni_9] + [bni_9]x0[4] ≥ 0∧[(-1)bso_10] ≥ 0)
(17) (COND_830_1_MAIN_INVOKEMETHOD2(TRUE, 830_0_iter_Load(x1[5], x2[5], x0[5]))≥NonInfC∧COND_830_1_MAIN_INVOKEMETHOD2(TRUE, 830_0_iter_Load(x1[5], x2[5], x0[5]))≥830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))∧(UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥))
(18) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧[1 + (-1)bso_12] ≥ 0)
(19) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧[1 + (-1)bso_12] ≥ 0)
(20) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧[1 + (-1)bso_12] ≥ 0)
(21) ((UIncreasing(830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(830_1_MAIN_INVOKEMETHOD(x1)) = [-1] + [-1]x1
POL(830_0_iter_Load(x1, x2, x3)) = [-1] + [-1]x3 + x1
POL(COND_830_1_MAIN_INVOKEMETHOD2(x1, x2)) = [-1] + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(<(x1, x2)) = 0
POL(<=(x1, x2)) = [1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(-1) = [-1]
COND_830_1_MAIN_INVOKEMETHOD2(TRUE, 830_0_iter_Load(x1[5], x2[5], x0[5])) → 830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[5], x2[5], +(x0[5], -1)))
830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4])) → COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))
830_1_MAIN_INVOKEMETHOD(830_0_iter_Load(x1[4], x2[4], x0[4])) → COND_830_1_MAIN_INVOKEMETHOD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), 830_0_iter_Load(x1[4], x2[4], x0[4]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer